a2 United States Patent

US009075753B1

(10) Patent No.: US 9,075,753 B1

Kamboh et al. 45) Date of Patent: Jul. 7, 2015
(54) METHOD AND APPARATUS FOR MANAGING (56) References Cited
INTERFACES ON A NETWORK ELEMENT
U.S. PATENT DOCUMENTS
(75) Inventors: Ameel Kamboh, Billerica, MA (US); N
Bernard St-Denis, Ottawa (CA) 6519458 B2* 22003 Ohetal. oo 455/445
’ 7,370,004 Bl 5/2008 Pateletal. 705/14
2009/0016713 A1* 1/2009 Liuet al. .oooooocorvcvcecrenrn. 398/17
(73) Assignee: RPX Clearinghouse LL.C, San))
Francisco, CA (US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Tammy Nguyen]
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Christopher & Weisberg,
U.S.C. 154(b) by 2330 days. PA.
(21) Appl. No.: 10/922,709 7 ABSTRACT
Interfaces may be created for applications on a network ele-
(22) Filed: Aug. 20,2004 ment without requiring the applications to include code spe-
cific for that type of interface. An Interface Management
Related U.S. Application Data System (IMS) may b.e in.cluded to provi(.ie a medi?l abstraction
layer between applications and physical media to enable
(60) Provisional application No. 60/509,595, filed on Oct. interfaces to be bound to applications without modifying the
8, 2003, provisional application No. 60/515,113, filed application to accommodate the interface and without modi-
on Oct. 27, 2003, provisional application No. fying the interface to accommodate the application. The IMS
60/569.421, filed on May 7, 2004. also provides an environment to support distributed interface
creation to enable interfaces to be created in a distributed
(51) Int. CL fashion to avoid congestion in the IMS and to facilitate spar-
GOG6F 15/173 (2006.01) ing of the IMS and interfaces. The interfaces communicate
Go6r 11/14 (2006.01) with applications and with each other through an IFID man-
(52) US.CL ager to streamline communications, and to enable the IMS to
CPC oo GO6F 11/1438 (2013.01) keep track of the interfaces that have been created on the
(58) Field of Classification Search network element.

LOI) & G 709/233, 223, 298/17; 705/14
See application file for complete search history.

16

.
1 16
Pe
Subscriber

Subscriber

19 Claims, 5 Drawing Sheets

1

N

i

10

16 14

Subscriber

1

Subscriber

U.S. Patent Jul. 7, 2015 Sheet 1 of 5 US 9,075,753 B1

Figure 1

10

'/l Subscriber
12

16
Subscriber \ 16 14
- ™ ™~

14
-

' 16

Subscriber PE 16
™

T

Subscriber
Figure 2
'/_ 20
| Switch Fabric 28 |
[Switch Fabric Interface 26]
A
v '
Forwarding
Ingress Engine Egress
Applications 40 ASIC 30 24 ASIC 32
1 [
____________ L SR — 34 ’/38 | 36

Mlnterfactiz Ingress Egress ———f— FE

anager &< Network Memory Network @ o o 24

Processor Processor
Control Card
4-—4- l

Data Services A

Card 46
Data Services

Card 46

3 4 [

Data Services - . . . ‘

Card 46 ; ; H LY :
Data Services 1/0 Card 1/0 Card 1/O Card /0O Card Y ® Y 10O Card

Card 46 22 22 22 22 22

U.S. Patent

Jul. 7, 2015

/O Cards

Sheet 2 of 5

Figure 3

Data Service Cards

— M —

Contro! Cards

US 9,075,753 B1

46
/O Card 22 56 / 54
f 1 44 5
VO Card 22 NPU || Host | -
1O Card 22
App App

[

L]

. Data Service /

Card 46
11O Card 22
Figure 4
/_ 44 /_ 44
CSC-1 CSC-2
Application 52 JFK Application 52'
OAM
57
IFID database
IFID dgéabase IFID Manager 58 IFID Manager 58' | 68
~ 46 . 46
DSC-1 DSC-2
MSB 62 IFID Manager 60 MSB 62 IFID Manager 60
DSC-Database DSC-Database
L IE 64 85 IE 64 86

US 9,075,753 B1

U.S. Patent Jul. 7, 2015 Sheet 3 of 5
Figure 5
70
(
App ID Primary IFID Manager Standby IFID Manager
72 address 74 address 76
Figure 6 s
'/-

Application 80

1/0 card service

. 11O card service
/O card service group 82 group 82 group 82
Numbered Un-numbered
Interfaces 84 Interfaces 86 N-IFs U-IFs N-IFs U-IFs
Figure 7
'/_ 88
Service group 90
Port 92 Port 92 Port 92
Interface IT IT T T IT T IT T
Tree 94 94 94 94 94 94 94 94 84

U.S. Patent

US 9,075,753 B1

Jul. 7, 2015 Sheet 4 of 5
96
. Iname 94
Flgure 8 App. Info. V/—
Layer L2 IF
IFID
State
96
Y ‘ e
Iname Iname Iname
App. Info. App. Info. App. Info.
Layer Layer Layer L2 Unit
IFID IFID IFID
State State State
| , ! e
Iname Iname Iname Iname
App. Info. App. Info. App. Info. App. Info.
Layer Layer Layer Layer L3/L2.5
IFID IFID IFID IFID
State State State State
[
h J r/
Iname Iname Iname
App. Info. App. Info. App. Info.
Layer Layer Layer I':g T):ISS
IFID IFID IFID
State State State
Figure 9
98
Iname '
App. tnfo.
Layer
IFID .
State Figure 10 '/96
¢—l—¢ -
pr— pr— Base: Contro! Plane Info,
- App Type - Application
App. Info App. Info. -App ID specific information +
Layer Layer 100 - State
IFID IFID UL D Rame Comman Info.
State State - IFID
102 | List of Interested Applications - Egress Info -
96 . 5 . o .
\ 1 '/ 108 List of Parent Pointers List of Child Pointers J—
Iname Iname =]
App. Info. App. Info.
Layer Layer
IFID IFID
State State
Primary List Backup List

104

106

110

U.S. Patent Jul. 7, 2015 Sheet 5 of 5 US 9,075,753 B1

Figure 11
Data Service Card 46 —
L2 Agent 114
1 1
Interface Entity 112
Config |
API |
MSB 122 16 Unit 118
Library
Application
Agent 120
Library
Appilication
Agent 120
IFID L
Manager L |
50 —_ L
Figure 12
Data Services Card 46
L2 Agent 114
Interface Entity 122
Config Unit: ATM Unit: PPP
APl = > 118a 118b
116
[} [}
Multi Service Base v \
L1 Agent IFID Manager ATM Agent PPP Agent
(MEV object) 80 120a 120b

US 9,075,753 B1

1
METHOD AND APPARATUS FOR MANAGING
INTERFACES ON A NETWORK ELEMENT

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to prior Provisional U.S.
Patent Application No. 60/509,595, filed Oct. 8, 2003, prior
Provisional U.S. Patent Application No. 60/515,113, filed
Oct. 27, 2003, and prior Provisional U.S. Patent Application
No. 60/569,421, filed May 7, 2004, the content of each of
which is hereby incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to network elements and,
more particularly, to a method and apparatus for managing
interfaces on a network element.

2. Description of the Related Art

Data communication networks may include various com-
puters, servers, nodes, routers, switches, hubs, proxies, and
other network devices coupled to and configured to pass data
to one another. These devices will be referred to herein as
“network elements.” Data is communicated through the data
communication network by passing data packets (or data
cells, frames, or segments) between the network elements by
utilizing one or more communication links between the
devices. A particular packet may be handled by multiple
network elements and cross multiple communication links as
it travels between its source and its destination over the net-
work.

FIG. 1 illustrates one example of a communication net-
work 10. As illustrated in FIG. 1, subscribers 12 access the
network by interfacing with Provider Edge (PE) network
element 14. The provider edge network element collects traf-
fic from the subscribers and multiplexes the traffic onto the
network backbone, which includes multiple Provider (P) net-
work elements 16 connected together. Through an appropri-
ate use of protocols and exchanges, data may be exchanged
with another subscriber or resources may be accessed and
passed to the subscriber 12.

The various network elements on the communication net-
work communicate with each other using predefined sets of
rules, referred to herein as protocols. Multiple protocols exist,
and are used to define aspects of how the communication
network should behave, such as how the computers should
identify each other on the network, the format that the data
should take in transit, and how the information should be
reconstructed once it reaches its final destination. Examples
of several protocols include Asynchronous Transfer Mode
(ATM), Frame Relay (FR), Ethernet, Transport Control Pro-
tocol (TCP), Internet Protocol (IP), Point-to-Point Protocol
(PPP), and Multi-Protocol Label Switching (MPLS),
although there are probably more than 100 other protocols as
well that may be used to govern aspects of communications
taking place over links on the network. Depending on the type
of'services to be provided to the customer, different protocols
may be required to be used by the provider to carry the
subscriber’s traffic on the network 10.

Network elements may include many ports, each of which
may be connected to one or more physical links operating
using one or more protocols. For example, the provider edge
network element 14 may connect with the subscribers over
different physical links connected to different physical ports.
Interfaces on a network element represent a mapping between
an application and one or more of the ports. For example, a

15

20

30

40

45

60

2

given application may need an interface to carry Ethernet
traffic across an IP-based Virtual Private Network tunnel. The
interface may require access to one or more of the network
element’s physical ports. By configuring an interface on the
network element, the network element’s physical resources
may be abstracted so that applications and services can use
the interfaces to obtain access to the network element’s physi-
cal resources.

Interface management relates to how interfaces are cre-
ated, used, managed, and destroyed on a network element.
Conventionally, interfaces were created at a central interface
controller and, once the interfaces were created, the interface
information was passed out to the port cards so that the ports
could be configured to handle traffic according to the inter-
face definition. This system had several drawbacks. For
example, configuring all of the interfaces on a network ele-
ment from a central card created a bottleneck, as a given
network element may be required to support thousands or tens
of thousands of interfaces. This limits scalability of the net-
work element. Additionally, the central interface manage-
ment system created a single point of failure which was
required to be replicated to provide redundancy in the inter-
face management system, thus increasing costs and compli-
cating the management system by requiring the exchange of
information between the redundant central interface control
systems.

SUMMARY OF THE INVENTION

The present invention overcomes these and other draw-
backs by providing a method and apparatus for managing
interfaces on a network element. According to one embodi-
ment of the invention, an interface manager provides a dis-
tributed interface creation mechanism to enable interfaces to
be created in a distributed fashion to avoid congestion in the
interface management system and to enable sparing of the
interface management system to be accommodated. The
interfaces created in the distributed manner communicate
with applications and each other through an interface man-
agement process to enable a given interface to communicate
with more than one application and to enable the network
element to keep track of the interfaces that have been created
on the network element.

According to an embodiment of the invention, the network
element includes at least one control card configured to host
applications, at least one data service card configured to cre-
ate interfaces, and at least one input/output card (I/O card) to
use the interfaces created by the data service card to handle
data on the network. Communication between the control
card and data service card is supported by an Interface Iden-
tification Manager (IFID manager) process.

Additionally, according to an embodiment of the invention,
separation of interface creation from applications allows
applications to use interfaces that have been created in a
distributed fashion without modifying the application to
accommodate the interface and without modifying the inter-
face to accommodate the application. A given application can
therefore access multiple media types through the creation of
appropriate interfaces without requiring the application to be
reprogrammed to accommodate the new media type. In one
embodiment, this is accomplished through the use of an
object-oriented interface management system in which inter-
face entity objects may be created for interfaces, and units
defining the properties of the interface may be created for the
interface within the interface entities. Other properties of the

US 9,075,753 B1

3

units may be specified as well through the additional defini-
tion of families within the units.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the present invention are pointed out with par-
ticularity in the appended claims. The present invention is
illustrated by way of example in the following drawings in
which like references indicate similar elements. The follow-
ing drawings disclose various embodiments of the present
invention for purposes of illustration only and are not
intended to limit the scope of the invention. For purposes of
clarity, not every component may be labeled in every figure.
In the figures:

FIG. 1 is a functional block diagram of a network architec-
ture

FIG. 2 is a functional block diagram of an example of a
network element including an interface manager according to
an embodiment of the invention;

FIG. 3 is a functional block diagram of an interface man-
agement system according to an embodiment of the inven-
tion;

FIG. 4 is a functional block diagram of a process that may
be used to create an interface on the interface management
system of FIG. 3 according to an embodiment of the inven-
tion;

FIG. 5 is a functional block diagram of a data structure
maintained by the portion of the interface management sys-
tem associated with the data service card according to an
embodiment of the invention;

FIGS. 6-9 are functional block diagrams of data structures
maintained by the portion of the interface management sys-
tem associated with the control card according to an embodi-
ment of the invention;

FIG. 10 is a functional block diagram of a data structure
maintained at a node of the data structure of FIG. 8 or 9
according to an embodiment of the invention;

FIG. 11 is a functional block diagram illustrating interfaces
created on a data service card according to an embodiment of
the invention; and

FIG. 12 is a functional block diagram of an example of an
interface created on a data service card.

DETAILED DESCRIPTION

The following detailed description sets forth numerous
specific details to provide a thorough understanding of the
invention. However, those skilled in the art will appreciate
that the invention may be practiced without these specific
details. In other instances, well-known methods, procedures,
components, protocols, algorithms, and circuits have not
been described in detail so as not to obscure the invention.

As described in greater detail below, according to an
embodiment of the invention, an interface manager provides
a media abstraction layer between applications and physical
media to enable interfaces to be bound to applications without
modifying the application to accommodate the interface and
without modifying the interface to accommodate the appli-
cation. The interface manager, according to one embodiment
of'the invention, provides arelationship database for mapping
interface components to one another and binding applications
to these components. The interface manager will also bind
components to the various media agents to create and destroy
interfaces. An interface can thus be mapped to many media
layers without the media and application having intimate
knowledge of the other.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 illustrates one embodiment of a network element 20
according to an embodiment of the invention. Although a
description of the structure and methods of operation of the
embodiment illustrated in FIG. 2 will be provided herein to
enable operation of the invention to be understood, the inven-
tion is not limited to this particular network element or archi-
tecture, as the invention may be used more generally in any
connection with any network element configured to handle
protocol data units on a communications network. The net-
work element of FIG. 2 may be used as a provider edge
network element 14, a provider core network element 16, or
as another type of network element, on a communication
network such as the communication network described above
in connection with FIG. 1.

As shown in FIG. 2, a network element 20 generally
includes Input/Output (I/0) cards 22 configured to connect to
links in the communications network. The I/O cards 22 may
include physical interfaces, such as optical ports, electrical
ports, wireless ports, infrared ports, or ports configured to
communicate with other conventional physical media, as well
as configurable logical elements capable of being pro-
grammed to implement interface definitions specified by an
interface manager, as described in greater detail below.

One or more forwarding engines 24 are provided in the
network element to process packets received over the I/O
cards 22. The forwarding engines 24 forward protocol data
units to a switch fabric interface 26, which passes the protocol
data units to a switch fabric 28. The switch fabric 28 enables
a packet entering on a port on one or more I/O cards 22 to be
output at a different port in a conventional manner. A packet
returning from the switch fabric 28 is received by one of the
forwarding engines 24 and passed to one or more 1/O cards
22. The packet may be handled by the same forwarding
engine 24 on both the ingress and egress paths. Optionally,
where more than one forwarding engine 24 is included in the
network element 20, a given packet may be handled by dif-
ferent forwarding engines on the ingress and egress paths.
The invention is not limited to any particular forwarding
engine 24, switch fabric interface 26, or switch fabric 28, but
rather may be implemented in any suitable network element
configured to handle packets on data flows through a network.
One or more Application Specific Integrated Circuits
(ASICs) 30, 32 and processors 34, 36 may be provided to
implement instructions and processes on the forwarding
engines 24 in a conventional manner. Optionally, a memory
38 may be included to store data and instructions for use by
the forwarding engines.

Applications 40 running on the network element, may
require interfaces to be created across one or more ports on
the I/O cards 22. Examples of applications include IP VPN,
VREF instances, Virtual Private Wire Service instances, Label
Distribution Protocol instances, and numerous other types of
applications. According to one embodiment of the invention,
an interface manager 42 provides an environment for support
of'a media abstraction layer to enable the applications to have
access to various interface types without the creation of
dependencies between the applications and interfaces.

In the embodiment of the invention shown in FIG. 2, the
interface management system includes one or more control
cards 44 configured to host the applications and maintain
interface information about the interfaces created on the net-
work element. The interface management system also
includes one or more data service cards that are configured to
create interfaces, as directed by the applications, and program
the interfaces on the I/O cards so that the interface definitions
may be used to handle traffic by the network element. Com-
munication between the applications and the data service

US 9,075,753 B1

5

cards is provided by an interface management process, that
allows the control card to maintain information about inter-
faces that have been created on the network element. By
causing the interfaces to be created on the data service card,
rather than the control card, the creation of interfaces may be
distributed in the network element to avoid bottlenecks in the
interface management system. Additionally, by replicating
interface information across data service cards, redundancy
may be implemented to increase the resiliency of the inter-
faces.

Interfaces may have many different properties. For
example, a given interface may include physical encapsula-
tion, logical channels, services per logical channel, and
attributes of these services. The interface manager enables
interfaces to be described in this manner, thus enabling mul-
tiple interfaces to be created to support the applications. In
operation, applications 40 requiring an interface on the net-
work element 20 interact with an IFID manager process on
the control card 44 of the interface manager system 42, which
causes an interface to be created on one or more of the data
service cards 46. The data service cards program the I/O cards
22 according to the interface definitions, so that the data
received on a port associated with the interface will be
handled according to the configuration of the interface and
passed to the network processors in the network element.
Optionally, the interface manager 42 may also pass configu-
ration information to the forwarding engines 24 to enable
them to handle the data received on the interface.

Interface management provides a way to create interfaces
on a network element and allows the underlying properties of
the interfaces to be abstracted from applications and from the
data flow. An interface can be created, destroyed, enabled and
disabled by the application. According to one embodiment,
the interfaces and the aspects of interface management may
be configured as a collection of objects, as discussed in
greater detail below.

FIG. 3 illustrates a functional block diagram of an interface
management system according to an embodiment of the
invention. As shown in FIG. 3 and as discussed above with
respect to FIG. 2, the interface management system 50
includes one or more control cards 44, one or more data
service cards 46, and one or more I/O cards 22. When an
application 40 requires an interface, it creates an application
process 52 on one of the control cards 44. If the application
process already exists, the application will use the existing
process for to control the interface. The control card passes
configuration information for the interface to one of the data
service cards to enable the data service card to create the
interface.

The interface is created in a host processor 54 on the data
service card. A network processing unit 56 on the data service
card then takes data plane information associated with the
interface and uses that to program the interface into the I/O
cards 22.

Communication between the control card and the data
service card occurs via an interface management process
referred to herein as an interface identity manager (IFID
manager). The IFID manager does not create the entities, but
rather is responsible for keeping track of the interfaces, and
communicating state and status changes and other informa-
tion between the interfaces and the applications.

FIG. 4 illustrates an example of a process that may be used
to create an interface on the interface management system of
FIG. 3 according to an embodiment of the invention. As
shown in FIG. 4, when an application 40 requires an interface,
it will create an application process 52 or will use an existing
application process on the control service card 44. The appli-

10

15

20

25

30

35

40

45

50

55

60

65

6

cation process will contact an IFID manager 58 and register
with the IFID manager. The registration process includes
passing information associated with the interface, such as the
application type, the application 1D, the application service
group, the application stale timer count in seconds, the appli-
cation address, and any other information that may be used to
register the application. The invention is not limited to the
particular information passed during the registration process.
The IFID manager with which the application registers will
become the host IFID manager for that application. When the
application registers with the host IFID manager, the IFID
manager distributes the application attributes to all of the
other IFID managers.

To create an interface, configuration information is passed
from an Operation, Administration and Maintenance (OAM)
process 57 on the control service card to an interface entity on
the data service card. The interface entity creates the interface
according to the configuration (as discussed in greater detail
below) and passes interface information through a multi-
service base process 62 on the data service card to an IFID
manager process 60 on the data service card. The IFID man-
ager passes the configuration information to a the interface
manager 58 on the control service card. Interface entities and
their properties are discussed in greater detail below in con-
nection with FIGS. 11 and 12. The interface entity will rep-
resent the interface on the network element. Since the data
service cards are responsible for creation of interfaces, inter-
face creation may be distributed in the network element.

An interface entity is a containment class for interfaces and
their components. Interface entities include three types of
information: control plane information, common informa-
tion, and data plane information. The control plane informa-
tion is data that contains information specific to the applica-
tion. The common information is data that is something both
the application and the data path needs, such as IP address
information, IFID information, etc. The data plane applica-
tion includes information that will be used to program the
hardware abstraction layer, such as the processors and other
circuitry on the I/O cards to allow the /O cards to handle
traffic according to the configuration of the interface. When
an interface is created, the data plane information is used to
plumb the data plane, and the control plane information and
common information are distributed via the IFID manager 60
to other IFID managers on the network element for use by
those IFID managers in connection with their interactions
with other applications and interfaces on the network.

The type of information to be distributed to different com-
ponents may vary, depending on the quantity of information
and how the information will be used. For example, the host
IFID manager 58 on the host control service card 44 and the
IFID manager 58' on the control service card 44' associated
with the standby application may be passed the control plane
information and common information. For all other IFID
managers, only the base node class (common information) is
distributed. The invention is not limited to the type of infor-
mation distributed between the IFID managers.

Using an IFID manager on the data service card to distrib-
ute information to the applications and other data service
cards frees the interface from being required to maintain a
database of those entities in the system that are required to be
notified whenever a state or status change occurs on the inter-
face. Specifically, by providing for notice to be channeled
through the IFID manager, the interface entities may notify
the other entities in the interface management system without
maintaining an updated list of which entities, such as which
applications, are currently using the interface. This simplifies

US 9,075,753 B1

7

management of the entities and enables the IFID manager to
manage communications on behalf of the interface entities.

In the embodiment illustrated in FIG. 4, the control service
card and data service card are illustrated as separate cards.
The invention is not limited in this manner, however, as the
data service card and control service card may be a single
network card. In this event, a single IFID manager may be
used to interface applications and interface entities.

The IFID manager 60 on the data service card 46 maintains
a database 66 to enable it to keep track of which IFID man-
agers are associated with which applications. One example of
a data structure that may be maintained by the DSC-database
66 is illustrated in FIG. 5. As shown in FIG. 5, the IFID
manager 60 on the data service card maintains a data structure
70 correlating application IDs 72 with primary IFID manager
address 74 and a standby IFID manager address 76. Main-
taining primary and standby IFID manager addresses allows
the IFID manager on the data service card to direct commu-
nications to the IFID managers on the control service card
whenever an interface associated with an application 1D
experiences a state or status change. Although one data struc-
ture has been illustrated, the invention is not limited to this
particular illustrated data structure.

IFID managers on the control service cards are tasked with
maintaining overall information associated with interfaces
that have been created by the interface management system.
Accordingly, each IFID manager 58 on a control service cards
44 maintains an IFID database 68. Data structures that may be
maintained in the database 68 are illustrated in FIGS. 6-10.
The invention is not limited to these particular data structures,
as many types of data structures may be used as well. The
particular data structures to be maintained may be configured
to enable particular actions to be taken quickly upon occur-
rence of a state or status change at an entity, or upon a failure
in a one of the cards associated with the interface manage-
ment system.

FIG. 6 illustrates one of the data structures 78 that may be
maintained in the database 68. The data structure 78 illus-
trated in FIG. 6 will be referred to herein as an application
tree. Since this data structure maintains information for a
particular application, there will be one application tree per
application type for a given IFID manager. As shown in FIG.
6, an application tree correlates an application 80 with 1/O
card service groups 82 that support interfaces for that appli-
cation. The interfaces supported by an I/O card service group
82 are grouped into numbered interfaces 84 and un-numbered
interfaces 86. Maintaining an application tree data structure
allows the IFID manager to quickly identify 1/O card service
groups that are affected by a change in an application, so that
the service groups may be notified of the change in state.
Similarly, a change in state of an I/O card service group can
quickly be correlated with applications that have interfaces
configured through that service group.

FIG. 7 illustrates another data structure that may be main-
tained by the IFID database 68. This data structure will be
referred to herein as a service group tree data structure 88. In
this data structure, service groups 90 are correlated with ports
92 and interface trees 94 associated with those ports. This
allows the IFID manager to quickly identify which ports are
associated with a given service group, and to identify which
interfaces are associated with particular ports. Thus, upon
failure of a service group, all ports and interfaces associated
with the service group may be quickly identified so that those
interfaces may be notified of the failure of the service group.
Similarly, upon failure of a port, this data structure allows the
interfaces associated with the port to be identified more
quickly than if the IFID manager was required to perform a

10

15

20

25

30

35

40

45

50

55

60

65

8

search through the configuration information of all interfaces
to determine which interfaces are affected by a particular
service group or port failure.

FIG. 8 illustrates an interface tree data structure 94. The
interface tree data structure includes a plurality of nodes 96
arranged in an hierarchical manner, each of which contains
information about a particular aspect of the interface. An
example node structure is illustrated in greater detail in con-
nection with FIG. 10, which will be discussed in greater detail
below. In the data structure of FIG. 8, the interface tree
includes a layer 2 interface node that is at the root of the tree,
anode for each of the layer 2 units, a node for each of the layer
2.5/3 units associated with the layer 2 units, and if there are
other attributes associated with the interface, such as MPLS
labels or other sub-attributes, additional nodes may be
included for these aspects of the interface as well.

FIG. 9 illustrates an interface tree data structure for a vir-
tual interface 98. The virtual interface data tree is similar to a
standard interface tree, with the exception that the virtual
interface at some stage must be correlated to a list of physical
interfaces to be used to forward traffic. Accordingly, the nodes
on the virtual interface tree data structure are organized
according to primary and backup interface node entries.

FIG. 10 illustrates a functional block diagram of a possible
node structure 96. The invention is not limited to this node
structure as many different node structures may be used. As
shown in FIG. 10, each node 96 is formed from a base object
100 having base object information including the application
type, application ID, state, and name. Other information may
be included in the base object as well. This base information
is common to all nodes within the interface tree and identifies
the node as belonging to the tree.

In addition, the node will include a list of interested appli-
cations 102, which allows a change in state of the node to be
quickly associated with interested applications to provide for
quick notification of the state/status change to the interested
applications. The node also includes control plane informa-
tion 104 (application specific information) and common
information 106 such as the IFID and egress information that
was discussed in greater detail above. Finally, the node also
includes information to enable it to describe its location in the
tree hierarchy, such as a list of pointers to parent nodes 108
and alist of pointers to child nodes 110. Including the pointers
allows the IFID manager to determine, from a particular node,
what other nodes in the tree structure are related to that
particular node.

Creation of interface entities will now be discussed in
greater detail in connection with FIGS. 11 and 12. As men-
tioned above, interfaces are created on a host processor 54 of
a data service card. The data service cards create an interface
by generating an interface entity for the interface. One
example of a data service card on which several interface
entities have been created is illustrated in FIG. 11. An
example of a data service card configured with a particular
example of an interface is illustrated in FIG. 12.

Interfaces are identified by their interface name (iName)
and are represented as objects, referred to herein as interface
entities 112, that are created when the interface is configured.
With the exception of virtual interfaces, and other interfaces
that are not bound to a particular media, interfaces are asso-
ciated with a layer 2 media agent 114, which sets up the
channel and framing for the interface.

As interfaces are configured, the interface entity 122
receives configuration information via a configuration API
116 associated with the Layer 2 agent 114 from the IFID
manager on the control service card, and parses out the logical
channels for the interface entity 112. These logical channels

US 9,075,753 B1

9

are represented as units 118 within the interface entity 112.
Each unit has independent properties that define the unit,
however they also share similar behaviors. For example, the
units maintain state information, bind to applications, and are
represented in the data-path. A unit object will be defined for
each of the interface types that the network element supports.
For example, unit objects may be defined for an Asynchro-
nous Transfer Mode (ATM) interface type, a Frame Relay
(FR) interface type, a Point to Point Protocol (PPP) interface
type, and interface types designed to communicate using
other protocols.

Aninterface entity 112 is therefore a collection of units 118
that have independent properties. A unit defines the logical
partition for that port/channel. There can be many units
defined within a given interface entity. Unit properties are
defined by families 124 within the unit. A family defines the
allowable application properties supported on the unit. A
family may be thought of as a service that the unit can support
and can have many associated attributes.

The L2 agent 114 is an object created within a messaging
environment, and interface entities 112 are then created
within that object. When an interface is to be created, OAM
pushes the configuration for the interface to the [.2 agent via
the configuration API 116. The interface entity 112 is then
created based on the configuration information and units are
crated within the interface entity. Families are then defined,
based on the configuration information, to specify the prop-
erties of the units.

Each unit is associated with a library application agent 120
thatis created within a multi-service base environment 122 on
the data service card. The multi-service base environment 122
also supports the IFID manager 60 described in greater detail
above. Once the interface properties are defined, the units 118
within the interface are mapped to application agents that
facilitate programming of the data-path.

Interfaces are created in several stages. First an interface is
configured on a physical port on an input/output card. This
configured component has an owner escape that will trigger
the creation of a process (.2 media) on the data services card
that hosts the input/output card. If the L2 media process
already exists on the data services card, the existing .2 media
process will be used and interface creation proceeds to the
next stage.

The second stage is the creation of interface entity objects
112 representing the physical port/channel, within the context
of'the L2 agent messaging environment object 114. The mes-
saging environment object 114 registers with OAM as an
owner of the interface configuration and OAM pushes the
configuration data to the messaging environment object 114.
The data is then parsed by the interface entity 112 and used by
the interface entity to start any agents, such as library appli-
cation agents 120, that it requires based on the configuration
information. The application agents 120 are started within the
L2 process space per input/output card. Only one instance of
these agents will exist in a single process. The interface entity
will also start any units 118 and families 122 required to
complete the configuration process.

The application agents 120 plumb the data-path and pro-
gram the network processing unit (I/O cards) to complete
establishment of the interface on the network element. The
IFID manager 60 communicates information associated with
the interface to the other IFID managers to allow the existence
and properties of the newly created interface to be known
throughout the interface management system.

All interface components, including units, families, and
other components, are associated with a multi-service base
interface identifier. This ID is used to identify the specific

10

15

20

25

30

35

40

45

50

55

60

65

10

component of the interface. For example, the interface ID
may have the following format:

Application
Number Input/output card Logical Channel Identifier RSVD
5 bits 5 bits 20 bits 2 bits

In this example, the application number is unique per appli-
cation group. The Input/Output card group represents the [/O
card and/or spared I/O card on a data services card. The
logical channel identifier is a logical channel with the network
processing unit that represents this object.

FIG. 12 illustrates an interface created on a data service
card and configured to enable communication to take place
using static PPP over ATM with IP addressing. The invention
is not limited to creation of this particular interface, however,
as this example is merely intended to illustrate application of
the invention in a particular context.

Assume that a handshake has occurred between OAM and
the port manager to create a port/channel for the interface on
the data services card. The interface to be created is to be
configured to be ATM with PPP encapsulation on one of the
optical channels. Initially, an owner escape for the interface
will create an 1.2 agent object 114 on that data services card
for the interface (iName) configured to that port. The [.2
object will create an interface entity 112 to represent that
interface. The interface entity 112 will register with OAM as
owner of the configuration using the OAM ID received at the
time of creation. OAM will push the interface configuration
down to the interface entity object via the configuration API
116. The interface entity will parse out the configuration
information into units 118 and families 124. As units are
created they are added to the interface entity. The IFID man-
ager 60 will keep track of the interfaces and their multi-
service base interface identifier and state and communicate
with the IFID manager on the control services card. The
interface entity 112 will bind with the appropriate agents 120
defined by the units and push the configuration for this new
interface. The agents will respond to interface entity 112 with
amulti-service base interface ID, egress information and state
obtained from multi-service base. The interface entity 112
will then store the entire unit multi-service base interface
identifiers in a tree based on the application type.

In this example, since the interface is to be configured to
support PPP over ATM, a unit 118a for an ATM virtual circuit
will be created, and a unit 1185 for a PPP session will be
created. Since PPP is an application running over ATM, there
will also be a PPPoA family object created within the ATM
Unit. The PPP unit will be part of the PPPoA family. The
interface entity will bind to an ATM agent 120a on the data
services card for this iName. The PPP unit will be treated as
an application unit and will bind to the PPP agent on the data
services card 1205.

The ATM agent will plumb the network processor via the
multi-service base APIs. The multi-service base will return a
multi-service base interface identifier and egress information
to represent this media. These attributes are returned to the
interface entity along with the state of the interface. The
interface entity will store the common information, control
plane information, and data path information for each unit,
and will store the units in another tree referenced by the
multi-service base interface identifier.

The similar process will occur for PPP, but only when the
L2 agent is ready to host applications. The PPP agent in this
case will also receive the L2 multi-service base interface

US 9,075,753 B1

11

identifier to bind to. The interface entity will then send the [.3
multi-service base interface identifier of the family to the
routing process (and any other interested application) that the
interface is a part of.

All interfaces created with multi-service base interface
identifiers on the data services card will be sent to via the IFID
manager 60 to the IFID manager 58 on the control services
card. As discussed in greater detail above, the IFID manager
58 will then be responsible for mapping multi-service base
interface identifiers to the data services card and redistribut-
ing the egress info for that interface to all the data services
cards that need to know about it.

Dynamic interfaces (units or family) work similar to the
static interfaces, and are typically created by applications
such as MPLS, PPP and L2TP. Any units/family created
dynamically will be received as configuration requests via the
configuration APIs on the interface entity. The multi-service
base interface identifier of the dynamic units will be returned
to the application requesting that unit. The process is similar
to the one described above and hence will not be described in
greater detail herein.

Virtual interfaces, e. g., GRE, L2TP, are interfaces created
for applications that are not bound to any physical device.
They typically exist on the control services card and can be
used by many applications. Virtual interfaces are not media
dependent and can sometime be bound to many different
media interfaces. Virtual interfaces must be bound to one or
more media interfaces in order to pass traffic.

Virtual interfaces may also be represented within an inter-
face entity. A unit can be used to describe the properties of the
virtual interface. In this instance, the interface entity will be
contained within an applications process space, will not be
bound to any physical port/channel, and will be owned by the
applications. Virtual interfaces exhibit the same behaviors as
other media interfaces; for example they maintain state and
can be deleted.

Tunnels are also represented as units. A tunnel optionally
can have an IP address, but it is not necessary. A tunnel
configuration request will be presented to the interface entity
by the application requiring the tunnel via the IFID manager.
The application is responsible for selecting a data services
card to represent the tunnel. If necessary, the interface entity
will spawn a tunnel type agent 120 to plumb the tunnel on the
data services card. The tunnels will assume a multi-service
base interface identifier that will be returned to the application
that requested it. Tunnel units will be bound to other units
where required, if the tunnel is specifically using a unit.

For example, L2TP tunnels are not bound to any other units
or to a particular interface. When an L2TP tunnel is config-
ured, the L2TP process will send the configuration informa-
tion to the L2TP agent on a data services card of its choosing.
The L2TP agent will also be started when aggregation is
configured on the network element. Each data services card
will be running this process. The data services card will
spawn an interface entity for the tunnel set and push down the
configuration for the tunnel set. The interface entity will bind
to the L2TP process that manages those tunnels. The interface
entity will parse the configuration information and create a
tunnel unit for each of the tunnels within the tunnel set. The
tunnel units will contain an [Pv4 family to describe the IP
address for the tunnel. This is usually a host IP address. The
tunnel will be assigned a logical channel identifier and a
multi-service base interface identifier. When a tunnel is cre-
ated the multi-service base interface identifier for that tunnel
is sent to the tunnel manager via the IFID manager.

MPLS tunnels will be managed by the tunnel manager. The
MPLS application will request the creation of a Reservation

10

15

20

25

30

35

40

45

50

55

60

65

12

Protocol (RSVP) or Label Distribution Protocol (LDP) tun-
nel. LDP tunnels follow the same process explained above
with respect to L2TP tunnels, however RSVP tunnels are
bound to L.2 units. For example, an ATM unit may be created
and have a family for MPLS, this indicates that this unit will
carry MPLS encapsulated packets.

Spared interface entities may be created in a manner simi-
lar to a primary interface entity. Both the active and the spared
interface entity will maintain the same state for the interfaces.
That means that the spared interfaces will be enabled and
active if the data-path for interfaces on the active interface
entity is enabled and active. This is required to provide a fast
switchover and immediate data flow. Interfaces created on the
spared interface entity will register with the spared interface
manager (if one is there) and update the spared interface
manager with state information. This is used as an audit as the
interface manager will also journal learned interfaces.

In the situation where a data service card is not spared, a
failure of the data service card will result in a loss of its
interfaces. Applications and agents that were dependent on
that interface entity will need to be notified. Although the
data-path may still be active for the created interfaces, no new
dynamic interfaces may be added.

When the interface entity recovers, it will reconstruct con-
figured interfaces, using the setup process described above.
When an agent is notified of the newly configured interface, it
should respond as normal (with its multi-service base inter-
face identifier) but ignore the multi-service base call. For
applications that created dynamic interfaces, those applica-
tions will need to re-send the configuration for these dynamic
interfaces and all multi-service base interface identifiers of
which it is aware that relate to those dynamic interfaces. This
is required since agents will probably not know how to cor-
relate the multi-service base interface identifiers to these
interfaces. Once the interfaces are reconstructed they are
audited against what is known in the IFID manager regarding
state and existence. If there is a difference between what the
IFID manager knows and what the interface entity has
received, the interface entity will be notified and may take
corrective action.

Ifthe IFID manager is not spared, it will need to save both
the free virtual multi-service base interface identifier pool and
the used virtual multi-service base interface identifier pool.
This will need to be saved in memory and reloaded when the
IFID manager recovers. Any applications that requested vir-
tual multi-service base interface identifiers will need to be
notified of the IFID manager failure, including the interface
entities on the network element.

When the IFID manager recovers, the interface entities will
send interface state information to the IFID manager. Appli-
cations that are using virtual multi-service base interface
identifiers will also send the virtual multi-service base inter-
face identifier maps to the interface manager. The IFID man-
ager will not need to redistribute any multi-service base inter-
face identifiers to data services cards, however, as they
already are up to date. Optionally, the interface agents on the
data services cards may send an audit message containing
information about interfaces of which they are aware to check
for differences in this information.

The functions described above may be implemented as a
set of program instructions that are stored in a computer
readable memory within the network element and executed
on one or more processors within the network element. How-
ever, it will be apparent to a skilled artisan that all logic
described herein can be embodied using discrete compo-
nents, integrated circuitry, programmable logic used in con-
junction with a programmable logic device such as a Field

US 9,075,753 B1

13

Programmable Gate Array (FPGA) or microprocessor, a state
machine, or any other device including any combination
thereof. Programmable logic can be fixed temporarily or per-
manently in a tangible medium such as a read-only memory
chip, a computer memory, a disk, or other storage medium.
Programmable logic can also be fixed in a computer data
signal embodied in a carrier wave, allowing the program-
mable logic to be transmitted over an interface such as a
computer bus or communication network. All such embodi-
ments are intended to fall within the scope of the present
invention.

It should be understood that various changes and modifi-
cations of the embodiments shown in the drawings and
described in the specification may be made within the spirit
and scope of the present invention. Accordingly, it is intended
that all matter contained in the above description and shown
in the accompanying drawings be interpreted in an illustrative
and not in a limiting sense. The invention is limited only as
defined in the following claims and the equivalents thereto.

What is claimed is:

1. Aninterface management system for creating, managing
and destroying interfaces on a network element, the interfaces
enabling physical resources of the network element to be
abstracted for use by applications running on the network
element, the interface management system comprising:

an application process object associated with an applica-
tion running on the network element;

an interface entity object configured to provide interface
services to the application process object, the interface
entity object representing one of a physical port and a
channel to be used by the application within the network
element; and

an interface identification (IFID) manager configured to
interface between the application process object and the
interface entity object to manage communications
between the objects, the IFID manager providing an
environment for support of a media abstraction layer to
enable applications to access a plurality of interface
types without creation of dependencies between the
applications and interfaces of the plurality of interface
types.

2. The interface management system of claim 1, wherein
the IFID manager comprises a host interface manager asso-
ciated with the application process object, and an interface
manager object associated with the interface entity object.

3. The interface management system of claim 2, wherein
the interface manager object is associated with other interface
entity objects as well as the interface entity object.

4. The interface management system of claim 1, wherein
the interface entity is a collection of units, each of which
defines a logical partition for a particular port or channel.

5. The interface management system of claim 4, wherein
properties of the units are defined by families with the unit,
such that a family defines allowable application properties
supported on the unit.

6. An interface management system for managing inter-
faces between applications on a network element and ports on
the network element, the interface management system com-
prising:

an input/output (IO) card;

a data service card configured to create an interface based
on configuration information from a control service
card, and to program the IO card based on data plane
information associated with the interface;

10

15

20

25

30

35

40

45

50

55

60

65

14

a control service card configured to pass the configuration
information concerning an interface to the data service
card to enable the data service card to create the inter-
face; and

an interface identity (IFID) manager configured to manage
communication between the control service card and the
data service card, the IFID manager providing an envi-
ronment for support of a media abstraction layer to
enable applications to access a plurality of interface
types without creation of dependencies between the
applications and interfaces of the plurality of interface
types.

7. The interface management system of claim 6, wherein
the IFID manager is further configured to monitor the inter-
face, the monitoring including communicating state and sta-
tus changes between the interface and an application.

8. The interface management system of claim 6, wherein
the IFID manager registers an application seeking to commu-
nicate through an 10 card.

9. The interface management system of claim 8, wherein
registration includes gathering information from the applica-
tion, the gathered information including at least one of an
application service group, an application stale timer, and an
application address.

10. The interface management system of claim 8, wherein
the IFID manager that registers the application becomes the
host IFID manager for the registered application and distrib-
utes application attributes to other IFID managers.

11. The interface management system of claim 6, wherein
the IFID manager is resident on the control service card.

12. The interface management system of claim 11, wherein
the interface entity includes:

control plane information that includes information spe-
cific to an application; and

data plane information used to program a hardware
abstraction layer on the IO card.

13. The interface management system of claim 6, wherein
the data service card includes an interface entity acting as a
containment class for interfaces and interface components.

14. A method for managing interfaces between applica-
tions on a network element and ports on the network element,
the method comprising:

receiving configuration information from a control entity
associated with an application;

creating an interface based on the configuration informa-
tion;

programming an input/output (IO) device based on data
plane information associated with the created interface;

managing communication between the application and the
10 device via the interface; and

providing, via an interface identification (IFID) manager,
an environment for support of a media abstraction layer
to enable the application to access a plurality of interface
types without creation of dependencies between the
application and interfaces of the plurality of interface
types.

15. The method of claim 14, further comprising monitoring
the created interface, the monitoring including communicat-
ing state and status changes between the created interface and
the application.

16. The method of claim 14, further comprising registering
the application by gathering information concerning the
application, the gathered information including an applica-
tion service group.

17. The method of claim 14, further comprising distribut-
ing application attributes to other IFID managers.

US 9,075,753 B1
15 16

18. The method of claim 14, further comprising providing
an interface entity including control plane information that
includes information specific to the application.

19. The method of claim 18, wherein the interface entity
further includes data plane information used to program a 5
hardware abstraction layer on the IO device.

#* #* #* #* #*

